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1. INTRODUCTION

Let X be a partially ordered set with order <, let Y = Y(X) be the
linear space of bounded real functions on X and .A = .A(X) C Y the
convex cone of isotone functions in Y, i.e., functions h satisfying hex) ~ hey)
whenever x, y E X, X <y. Given a weighted uniform norm II . ilw on Y
defined by

Ilfllw = sup w(x) 1!(x)l, (Ll)

where w in Y is a weight function satisfying w(x) ~ 0 > 0 for all x E X,
the problem is to find g in .A, if one exists, such that

Ilf - g Ilw = inf III - h liw .
hE.IIf

(1

(1

We call this problem the problem of isotone optimization with respect to
the weighted uniform norm (1.1). Instead of (Ll) we may' consider other
norms, e.g., the Ip norm, 1 ;2; p < (f). Let X = {Xl' x2 , ... , xn } be a finite
partially ordered set. For each p, 1 ~ p < (f), define an Ip norm II . li~ by

Ilfll~ = C21 Wp,i If; 1pt
P

,

where1= {/;}f=l is a function on X and wp = {wp,i}f~l > 0 is a given weight
function. Since X is finite, we identify any function f with the sequence
{fl ,J2,· .. ,Jn} where j; = !(Xi) and for convenience write f = {j;}~l' The
class .A, of isotone functions in this case is the set of all h = {hi}f=l on X
satisfying

hi ;2; h; whenever Xi , X; E X and Xi < X; .
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by the National Science Foundation and the Office of Naval Research. The material was
revised under Grant GK-32712 from the National Science Foundation.
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The problem of isotone optimization with respect to the lp norm is: given
{1i}~1 find gp = {gp,i}f=l in JI, if one exists, such that

lif - gp II~ = inf II! - h [I~.
hEAt

(1.5)

(1.6)for all i,

In [11] we considered the problem (1.2) and characterized the set of all
its solutions. In this article we investigate the problem (1.2) further and
show its relationship to the problem (1.5). In Section 2 we show that when X
is finite, under certain conditions on the weight functions W p , the solution
of (1.5) converges as p -+ 00 to a solution of problem (1.2) for some
W = {wi}f=l' In Section 3 we point out a norm reducing property of a
particular solution of (1.2) when w(x) = 1 for all x E X. Specifically ifIi E "Y,
i = 1,2 andN, i = 1,2 be the corresponding particular solutions of (1.2),
we show that 1]!10 - f2° ttw ~ IIf1 - f211w holds. In Section 4 we investigate
the differentiability properties of the solutions of (1.2) when X = [a, b], a
closed interval of the real line and in Section 5 we construct algorithms to
compute these solutions and establish relevant rates of convergence.

The problem (1.5) arises in certain aspects of statistical analysis involving
the restricted maximum likelihood estimation. To give a simple example,
maximizing the joint density ofn independent normal distributions N(fLi , o'l),
i = 1,2,... , n with an ordering restriction on the means fLi is the same as
solving an isotone optimization problem with respect to the 12 norm. See
[2, 10]. Owing to the applications to statistics this problem and a more
general version which involves minimization of a function defined on "Y
and satisfying certain conditions, are extensively investigated. For a history
of the problem see [2]. See also [3], [7], and [12]. The solution gp = {g p,i}f=l
of the problem (1.5) for 1 < p < 00, is known to be gIven by (See [12]).

g . = max min U (L n U)
p" {U:iEU} {L:iEL} 'Ii

= min max u (L n U)
{L:iEL} {U:iEU} 'Ii ,

where Land U are lower and upper sets respectively and unique up(L n U)
satisfies

L Wp,i Iii - up(L n UW ~ L Wp,i Ifi - U IP (1.7)
iEL() U iEL() U

for all real u. (We call Lex a lower set if Xi ELand Xj EX, Xj < Xi implies
that Xj E L. Similarly U C X is an upper set if Xi E U and Xj E X, Xj > Xi

implies that Xj E U.) When p = 2 it is easy to see that (1.7) gives
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and from (1.6) it may be seen that g2 has an elegant expression. We shall
use these expressions in Section 2.

2. CONVERGENCE PROPERTIES OF THE ISOTONE OPTIMIZATION PROBLEM WITH

RESPECT TO THE lp NORM

Let X = {Xl' X 2 , ... , xn } be finite partially ordered. In this case the norm
(1.1) takes the form

Ilfll", = max H'i Iii [,, 1;;; i;;; n
(2.1)

where f = {1i}7=1' W = {Wi}:l > 0 and vii consists of all h satisfying (1.4).
For convenience denote the problem (1.2) for this case by P 00 and the problem
(1.5) by P p , 1 ~ p < 00. We investigate the convergence of the solution gp
of the problem P p as p ---+ 00.

THEOREM 1. Assume that there exists W = {wi}7~1 > 0 such that

for all i. Then the solution gv = {gp,i}~~l of the problem P p converges as
p -+ 00 to a solution goo = {goo,i}:l ofthe problem P 00 with weights w = {wi}f=l'
Specifically

goo i = limitgp i = max min uoo(L n U)
, p->oo • {U:iEU} {L:iEL}

= min max uoo(L n U),
{L:iEL} {U:iEU}

(2.3)

for all i, where Land U are lower and upper subsets of X respectively and
uoo(L n U) is the unique real number satisfying

max Wi Iii - uoo(L n U)I :::;;: max Wi Iii - u I
ieLn U - iELn U

for all u. (2.4)

Remarks. (1) If there exist 0, m > 0 such that 0 < °~ Wp.i ~ m for
aU p and i, then (2.2) holds if and only if Wi = 1 for all i. In such a case
the P 00 problem has unit weights.

(ii) The solution of the problem P 11' I < p < 00 is unique and is
given by (1.6). When f = {1i}7=1 is not isotone, the P 00 problem has an
infinite number of distinct solutions. This follows from the results in [1
Theorem I indicates that exactly one of the solutions of the P 00 problem
is a limit of the solutions of the P 11 problem when the hypothesis ofTheorem 1
holds.

(iii) Compare (2.3) with the results in Ref. [11] of part I of this article.
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Proof of Theorem 1. We first introduce some notation and prove two
lemmas. For a fixed f = {fir:=1 we define functions T p : Rn -+ Rand
K p : R -+ R for 1 ~ P ~ 00 by

n

Tiu) = L Wp,i Ifi - Ui IP,
i=1

n

Kiu) = L Wp,i Ifi - u IP,
i=1

where u = (u1 , U2 , ... , un) ERn and u E R.

LEMMA 1. Assume (2.2) holds, then

1 ~ P < 00,

1 ~ P < 00,

and
limit (KP(U»I/ p = K",(U) ,

P-)oo

(2.5)

(2.6)

the convergence being uniform on compact sets in the domain of the respective
function.

Proof From (2.2) it follows that there exist real numbers °1 , 02 > 0
and Po ~ 1 such that 01 ~ WP,dWiP ~ 02 for all i for all p ~ Po. Hence

n

Tp(U) = L (wp,dWl)(Wi Iii - Ui \)p ~ (n0 2)(T",(U»P,
i~1

for all P ~ Po. Also by finiteness of X, there exists io depending upon u
such that Wi Iii - Ui I = T ",(u). Henceo 0 0

It follows that

Since T ",(u) is continuous in u, it is bounded on a compact domain. Hence
the uniform convergence of T ,lU)1/P to T ",(u) follows. Thus (2.5) is established.
(2.6) follows from (2.5) with u = (u, U, ... , u).
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Lemma 1 corresponds to the well-known result in measure theory con
cerning the function spaces LpCX, E, p,), 1 ~ p ~ 00 that when f1'(X) < 00,

the L p norm converges pointwise to the L oo norm as p ->- 00. See, e.g.,
Our setting owing to the introduction of the weight function W p , which may
vary with p, differs somewhat from the setting of the L p spaces. Hence a
condition such as (2.2) is required to prove convergence.

LEMMA 2. Suppose for each p, 1 < p < 00 the real number Up satisfies
Kiup ) ~ Kp(U) for all u. Then Up is unique, limit up = Uoo exists as p ->- 00

and Koc(Uoo ) ~ Koo(U) for all u. Further, K oo has a unique minimizer.

Proof Note that Kp(U) ->- 00 as !u !->- 00 for 1 ~ p ~ 00. Since .'<:p is
continuous in u, by using compactness arguments we may show that a
minimizer of Kp exists for 1 ~ p ~ 00. It is easy to see that Kiu) for
1 < p < 00 is strictly convex in u (see [5]). Hence, the minimizer Up is
unique. If Voo satisfies Koo(Voo) ~ Koo(U) for all u, then using the finiteness of X
we have Koo(Voo) = Wi (Xi - voo) = Wi (Doo - Xi) for some i1 , i9 , 1 ~ i1 ,

1 1 2 2 ...

i2 ~ n. It follows that the minimizer Doo of Koo is also unique.
It is easy to see that

min Xi:::;;: up:::;;: max Xi,
I;<';i;:;:;n - - I;:;:;i;:;:;n

for all p, 1 < p < 00. Now let tk = u
Pk

' k = 1,2,... be any subsequence
of Up such that PI' ->- 00 as k ->- 00. Since tk are bounded there exists a con
vergent subsequence, say tk . ->- too • We then have, letting r1 = Pk. for con-, ,
venience,

for all u.

Since K~P is continuous and converges to K oo uniformly on compact sets
(Lemma 1), on letting j ->- 00 we have Koo(too) ~ Koo(U) for an u. It follows
that too = Doo , since the minimizer is unique. Thus any subsequence uPk of Up

such that Pk ->- 00 as k ->- 00 contains in turn a subsequence converging
to Doo • Hence, limit Up = Voo as P ->- 00 and the assertions made in the lemma
hold with Uoo = Doo •

Now we proceed to the proof of Theorem 1. The solution gp = {gP.i}~=l

of the problem P p , 1 < P < 00 is given by (1.6). Considering L n U instead
of X in Lemma 2 we conclude that

limit uvCL n U) = uoo(L n U)
p->a:>

exists and (2.4) holds. Since the number of lower and upper sets is finite,
from (1.6) it follows that the limit of g p,i exists as P ->- 00 for all i and (2.3)
holds for some goo,i . It now suffices to show that {gco,i}~=l is a solution of
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the problem Pro. Since {g1'.i}~=l is isotone for each p, {gro.i}~=l also has this
property. Clearly

for all p, all i.

Using the definition of {g1'.i}~=lwe have 71'(g1')1/1' ~ 71'(U)1/1' for all U ERn.
Lettingp-+ 00 we conclude from (2.5) that 7ro(gro) ~ 7ro(U) for all uERn.
Hence {gro.i}~=l is a solution of the problem Pro . The proof of Theorem 1
is now complete.

3. NORM REDUCING PROPERTY OF A SOLUTION OF THE ISOTONE OPTIMIZATION

PROBLEM WITH RESPECT TO THE UNIFORM NORM

Let X be an arbitrary partially ordered set and w(x) = 1 for all x E X.
Then the norm (1.1) becomes the uniform norm [I '11, where

IlfII = sup 1f(x)l,
xeX

feY. (3.1)

We consider the problem (1.2) with 11'llw replaced by 11'11. ForfEY define
fO EY by

fO = 0/2)( sup fez) + inf fez)),
{z:z:S;x} {z:x:S;z}

It is easy to see that jO is isotone.

THEOREM 2. Letf,f1,/2 E Y. Then

(i) Ilf - jO II = min Ilf - h II,
heA

i.e., jO solves the problem (1.2) for the norm II . II.

(ii) Il.ftO - f2° II ~ IIf1 - f211,

i.e., the norm reducing property holds.

Proof

(i) Let

XEX. (3.2)

(3.3)

(3.4)

8 = (1/2) sup (j(x) - fey)),
{(x,y)eXx X:x:s;y}

g(x) = sup fez) - 8, x EX,
- {z:z:S;x}

g(x) = inf fez) + e,
{z:x:S;z}

XEX,

(3.5)

(3.6)

(3.7)

then
fO = (1/2)(g + g). (3.8)
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We know from the results of Section 2 of [11] that

8 = min II! - h II = II! - g II = II! - gil·hE.(t - '

321

(3.9)

But since g :::;;; jO :::;;; g, (i) again follows from the results in Section 2 of [1

(ii) Let 8i , gi, iti' i = 1, 2 be defined by (3.5), (3.6), (3.7), respec
tively, with Ii , i = 1,2, in the right-hand sides of these expressions. Again
(3.8), (3.9) hold with 8, J, jO, g and it replaced respectively by 8i ,Ii, /;,0, gi
and iti for each i = 1,2. Let x E X and E > O. Then by the definition ofgi'
iti there exist Zl , Z2 E X such that Zl < x < Z2 and

gl(X) :::;;;A(Zl) - 81 + E,

it2(X) ;;;J;(Z2) + 82 - E.

Also
it1(X) :::;;;A(Z2) + 81 ,

g2(X) ~ !2(Zl) - 82 •

Using (3.8) we may derive from the above four inequalities the following:

AO(x) - !20(X) ~ (lj2)(A(Zl) - j;(Zl» + (lj2)(A(Z2) - J;(Z2» + E.

Hence
AO(x) - j;°(x) ~ IIA - j; II + E.

Interchanging subscripts 1 and 2 and noting that E, x are arbitrary we
conclude that (3.4) holds. The proof is now complete.

Remarks. According to the results of Section 2 of [IlJ any g in A
satisfying g ~ g ~ it minimizes II! - h II for h in Jft. We have indeed
isolated an jO in A from this infinite set of minimizers such that (3.4) holds.
It is shown in the Ref. [8J of part I of this article that a similar result is true
under certain conditions for the function space L",,(X, .E,I-"), where X is a
totally ordered set. The result also holds for the L 2 norm case. See
Dykstra [4].

4. DIFFERENTIABILITY PROPERTIES OF g AND it

We now consider the problem (1.2) with X = [a, b], a closed interval of
the real line. We showed in [IIJ that both g and it solve the problem (1.2).
Here

g(x) = sup (f(z) - 8jw(z»,
ZE[a,x]

it(x) = inf (f(z) + 8(w(z»,
ZE[x ,b]

xE[a,b],

XE [a, b],

(4.1)

(4.2)
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and

where
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w(x) W(y)
B = (:,~Fes w(x) + w(y) (f(x) - fey)),

S = {(x, y) E [a, b] X [a, b]: x, y E [a, b], x ~ y}.

In this section we investigate the differentiability and other properties of g
andg.

We first introduce concepts called the Level and Descent Sets. Let f E 1/
and define for each x E [a, b] the following sets:

L(f, x) = U ([x, y]: x < y ~ b andf(z) = f(x) for all z E [x, y]},

D I (f, x) = U{(x, y): x < y ::;; b andf(z) <f(x) for all z E (x, y)},

D2(f, x) = U ([x, y]: x < y ~ b andf(z) ~f(x) for all Z E [x, y]}.

Define the Level Set L(f) and the Strong Descent Set Dlf) by

L(f) = U L(f, x),
",E[a,b]

D I (f) = U D I (f, x).
"'E[a,b]

Also define the Weak Descent Set Dlf) by

D 2(f) = U D2(f, x).
"'E[a,b]

We now state

LEMMA 3. LetfEre.

(i) If L(f) oF 0 then

00

L(f) = U [an, f3n],
n~1

a :::; an < f3n ~ b for all n,

where [an, f3n] are disjoint closed intervals such that fez) = f(an) for all
Z E [an, f3n].

(ii) If D I (f) oF 0 then

00

D 1(f) = U (Pn, un),
n~1

a :::;; Pn < Un ~ b for all n,

where (Pn, un) are disjoint open intervals such that fez) <f(Pn) for all
Z E (Pn, Un) andf(x) ~f(Pn)forall x E [a, Pn].
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(iii) If D2(f) =/= 0 then
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00

D2(f) = U [An, fLn],
n=1

a ::;:; An < fLn ;S; b for all n,

where [An, fLn] are disjoint closed intervals such that fez) ;£f(An) for all
z E [An, fLnJ andf(x) <f(An) for all x E [a, An)'

Clearly, whenever L(f) =/= 0, D2(f) =/= 0 we have,

00

VO)(!) = interior of L(f) = U (Oin , Pn),
n=1

D~O)(f) = interior of D2(f) = U(An, fLn).
n=1

We denote byf (kJ(X), the kth derivative offat x, if it exists. We define P as
in Section 2 of [11] and recall that iff and ware continuous then so is g.

THEOREM 3. Let fL* be the Lebesgue measure on [a, b].

(A) Let f, w E ~ then

(i) (fE A) ¢>- (DtCf) = 0) ¢>- (D2(f) = L(f»

(ii) L(g) = D2(f - 8/w) :) P

(iii) {x E [a, b]: g(x) = f(x) - B/w(x)} = [a, b] - DI (f - B/w)

(iv) {x E fa, b]: gln)(x) = 0, n = 1, 2, ...} :) D~O)(f - 8/w)

(v) g(l)(x) may not exist at most on a set

E C [a, b] - D~o)(f - Bjw)

with fL *(E) = O.

(B) fL*(D 2(f» = fL*(mOI(f»for allfE~.

Iff, w E ~, g ~ constant and

fL *(D2(f - 8jw) = fL *(D~O)(f - 8jw» = b - a,

which, of course, implies from A(iv) that g(n)(x) = 0, fl-* - a.e. on [a, bJfor
n = 1,2,..., then bothf and w cannot be absolutely continuous.

Remarks.

(i) A similar theorem may be stated for g, but in this case we need
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to modify the definitions of L, DI and Dz sets. For example, we may define
the set D/ as follows

DI'(J, x) = U{(Y, x): a :::; Y < x and

for all z E (y, x)},

DI'(f) = U DI'(J, x).
xE[a,b]

fez) > f(x)

X E [a, b]

Similar modifications necessary for the definitions of other sets are evident.

(ii) We give below one example of special interest to illustrate the
results of Theorem 3. It will be seen that g<ll(X) does not exist on the set
E = [a, b] - D~O)(f - Olw) with f-L*(E) = O. (See Theorem 3, A(v).) Let
[a, b] = [0, 1] and f: [0, 1] -- [0, 1] be the well-known Cantor ternary
function, ([6], p. 138). Thenfis nondecreasing continuous with range [0, 1].
Hence 0 = °and!J = g = f Let K be the Cantor ternary set. Then [0, 1] - K
is the union of disjoint open intervals and f is constant on each of these
intervals. Clearly D~O)(f - Olw) = D~O)(f) = [0, 1] - K and on [0,1] - K,
f(l)(x) exists and equals 0. PI) does not exist on E = K. It is a known fact
that f-L*(E) = 0.

We prove Lemma 3 before proceeding to the proof of Theorem 3.

Proof of Lemma 3. We prove (iii). The proofs for (i) and (ii) are similar.
Let t E D2(f). Define

~\ = inf{x: t E [x, y], a ~ x < Y ~ b andf(z) -;i;,f(x) for all z E [x, y]},

f-Lt = sup{y: t E [x, Y], a ~ x < Y :S b andf(z) :Sf(x) for all Z E [x, y]}.

There exist [xn , Yn], n = 1,2,... such that t E [xn , Yn], a ~ Xn < Yn ~ b,
fez) ~f(xn) for all z E [xn , Yn] and Xn-- At as n -- 00. We may take
X n+1 ~ X n ... ~ Xl < YI' Since X n ~ Xl :S t -;i;, YI we have fez) -;i;,f(xl ) for
all z E [Xl' Yl] and fez) ~f(xn) for all z E [xn , t]. Hence fez) ~f(xll) for
all z E [xn ,Yl]. Since f(xn+l) ~ (f(xn)), using continuity of f we have
feAt) ~f(z) for all z E [At, Yl]. Thus, At E Dz(f). Suppose t E [x, Y], where
a :s;; x < Y ~ band fez) ~f(x) for all z E [x, y], then x E [At, y] and
feAt) ~ fez) for all z E [At, y]. Hence

f.1-t = sup{y: At < Y ~ b andf(z) ~f(At) for all z E [At, y]}.

Clearly, At < f.1-t and fez) ~ feAt) for all z E [At, f.1-t]. Thus [At, f-Lt] C Dz(f).
Hence,

D2(!) = U [At, f.1-t].
tED2(f)
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Suppose U E Pt ,fLt] then Au ::;;;; At and ,Uu ;:;; fLt. Since t E [At, fLt] implies
t E [Au, iLu] we have At ::;;;; Au and fLt ;:;; fLu' Thus, [At,,utl = [Au, ftuJ. The
intervals are therefore disjoint and the countability follows since each of the
intervals includes a distinct rational number.

Suppose now there exists x, a::;;;; x < An for some n such thatf(x) ~
Define

v = inf{u E [x, An]:f(u) = max fez)}.
ZE[X,AnJ

Then a::;;;; v < An andf(z) ::;;;;f(v) for all Z E [v, An] which is a contradiction
to the definition of An .

LEMMA 4.

(i) (fE A) => (DI(f) = 0) <= (D2(f) = L(f)).

(ii) Suppose f E CC then

Proof of the lemma is simple. Note that if fE "Y - CC then DI(f) = 0
does not imply thatfEA or D2(f) = L(f). As an example takef: [0, I] -+ R
defined by f(x) = 1, x E [0, 1) and f(1) = 0. Similarly D2(f) = L(f) does
not imply that f EA. Take for example f: [0, 1] -+ R given by f(x) = 0,
X E [0, 1/4] u {1/2},j(x) = x otherwise.

Proof of Theorem 3.

A(i) This is part (ii) of Lemma 4.

(ii) Let u E L(g) = U:=I [~n ,1]n] by Lemma 3, then U E [~n ,
some n andg(x) = g(~n) for all x E [~n, 1],,]. Sinceg EA, using the properties
of L(g) we conclude that g(x) < g(~n) for all x E [a, ~,,). It follows from
the definition of g that g(~,,) = f(~,,) - eJw(~n) and

for all x E [;n , ?]n].

It follows that U EL(f - BJw).
Now if U ED2(f - B/w) = U:=I [Yn , 0,,] by Lemma 3, then U E [Yn, on]

some n. Also

Using the definition of g we conclude that g(x) = g(y,,) for aU x E [Yn , on}.
Hence u E L(g). This proves the equality of two sets. The assertion con
cerning P follows from the properties of P established in Section 2 of [11].
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(iii) Let x E [a, b] - D I(f - 8(w). We assert that if a ~ y < x then

fey) - 8(w(y) ~f(x) - 8(w(x).

If, on the contrary, for some y, a ~ y < x,

fey) - 8(w(y) > f(x) - 8(w(x)

holds, then let

t = sup{u: U E [y, x],f(u) - 8jw(u) = max (f(z) - 8jw(z))}.
ze[y,x]

Clearly a ~ t < x and by continuity of f - 8(w there exists v, x < v such
that

fez) - 8(w(z) <f(t) - 8(w(t) for all z E (t, v).

Hence, x E D I(! - 8(w), a contradiction. This establishes the validity of the
assertion made above. It follows from the definition of g that g(x) =
f(x) - 8jw(x).

Now suppose x E D I (f - 8(w) = U:=I (Yn ,On) by Lemma 3. Then
x E (Yn, on) some n. Hence

We then have

g(x) ~ g(Yn) ~f(Yn) - 8(w(Yn) > f(x) - 8(w(x).

(iv) From Lemma 3 it follows that L(g) = U:~l [gn, 'lJn], where
[gn , 'lJn] are disjoint intervals. Hence £<0l(g) = LJ:~I (gn , 'lJn) is an open set
and g<n)(x) = 0 for all x E £<O)(g), n = 1,2,.... From part (ii) we have
£<O)(g) = D~O)(f - 8(w).

(v) Since g is nondecreasing, it follows that g is differentiable J.L* - a.e.
(see [9], p. 96.fBy (iv), g(l)(X) = 0 on D~O)(f - &(w) and the result follows.

(B) If D2(f) = 0 then m°l(f) = 0 and the J.L*-measures of these
two sets are equal to O. Suppose D 2(f) =1= 0, then by Lemma 3 D 2(f) =
U:=I [lin, J.Ln] where the intervals [lin, J.Ln] all disjoint. Hence D~O)(f) =
U:=I (lin, J.Ln). It follows that the set D2(f) - D~O)(f) is at most countable
and therefore the fk *-measures of these sets are equal.

The proof of the remaining part is similar to the one used in showing
that the Cantor ternary function is not absolutely continuous. Let

H = [a, b] - D~o)(f - 8jw).
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Clearly H is compact and a, b E H. By hypothesis p..*(H) = O. Let E > O.
From the theory of Lebesgue measure we conclude that there exists a
countable sequence of open intervals (Xi, Yi), i = 1,2,..., - 00 < Xi < Yi < 00

such that He U:1 (Xi, Yi) and 2:::1 IYi - Xi I < E. Since H is compact,
by taking finite unions and renumbering if necessary, we can find a finite
covering (Xi' Yi), i = 1,2,..., n of H such that Xi < Yi < Xi+1 < Yi+1'
i = 1,2,... , n - 1 and a E (Xl' Yl), bE (xn , Yn). Now D~O)(f - 8jw) C L(g)
by A(ii) and the former set is a countable union of open intervals on each of
which g is constant, it follows that g(yJ = g(Xi+1)' i = 1, 2, ... , n - 1. Thus

n-1

[b - Xn I + I IYi - Xi I + IY1 - a I < €
i~2

and
n-1

YJ = g(b) - g(a) = g(b) - g(xn ) + I (g(Yi) - g(Xi)) +g(Yi) - g(a)
i~2

Since by hypothesis YJ > 0, it follows that g is not absolutely continuous.
We showed in Theorem 2 of [11] that iff and ware absolutely continuous
then so is g. Hence both f and w cannot be absolutely continuous.

The proof of Theorem 3 is now complete.

We remark that part B may also be proved by applying Theorem
p. 106 of [9] to g.

5. ALGORITHMS

In this section we consider the problem (1.2) with X = [a, b] as in Section 4
and develop algorithms to compute g and g defined by (4.1) and (4.2),
respectively. Specifically we let Gn , n = 1,2,... be a sequence of finite sets
contained in [a, b] such that Gn becomes dense in [a, b] as n ---+ 00 and
construct a sequence of functions gn(gn), n = 1,2,... defined on [a, b] but
depending on Gn such that gn(gn) converges uniformly to g(g) as n ---+ 00.

We also establish rates of c~nvergence of various quantities involved. We
now state the following:

THEOREM 4. Let/, WE 'ff,f1= A. Let Gn C [a, b], n = 1,2,... be a sequence
offinite sets such that a, bEGnfor all nand

On = sup inf I X - Y I ---+ 0
",era,b] yEGn

as n -+ 00.
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Let

and

Define also

VASANT A. UBHAYA

Sn = {(x, y) E Gn X Gn: x, Y E Gn , x ;:;; y}

8 - max w(x) w(y) (f(x) - fey))
n - (X,y)ES" w(x) + w(y) .

M f = max If(x) I,
xE[a,b]

M w = max I w(x)l,
xE[a,b]

mw = min I w(x)l·
xE[a,b]

We then have

(A) 8n ;:;; 8 for all nand 8n --+ 8 as n --+ 00 according to

where

A(h, ()) = max Ihex) - h(y)l, hE '(/
[X-yl~S,X,YE[a,b]

is the modulus of continuity ofh. (See [8].)

(B) Define gn, gn: [a, b] --+ R by

gn(x) = max (f(z) - 8n/w(z)),
ZE[a,x]nG"

gn(x) = min (f(z) + 8n/w(z)),
zE[x,b]nG"

XEGn ,

XEGn ,

and for x E [a, b] - Gn choose any value of gn(X)(gn(X)) that will make the
function gn(gn) nondecreasing on [a, b] (e.g., choose linear interpolation or
form a step function). Then gn( = gn or gn) converges to g(= g or g, respec
tively) uniformly according to

< Mw2/mw2 + 2) A(f, ()n) + (1/mw2)(Mw2Mf/mw + 28) A(W, ()n). (5.2)

(C) Define gn, gn: [a, b] --+ R by

gn(x) = max (f(z) - 8/w(z)),
- ZE[a,x]nG"

gn(x) = min (f(z) + 8/w(z)),
zE[x,b]nG"

XEGn ,

XEGn ,
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and for x E [a, b] - Gn choose any value of gn(x)(gnCx» as in (B) that will
make the function gnC gn) nondecreasing on [a, b]. Then gn ~ g ~ g ~ gnand
gnC = gn or gn) converges to g( = g or g, respectively) uniformly according to

(D) If Gn in addition satisfies

Gn C Gn+1 for all n,
then

gn(x) ~ gn+m(x) ~ gn+m(x) ~ gn(X) for all x E Gn

all n, m ~ 1,

where gn and gn are as defined in (B) or (C).

Proof of Theorem 4.

(A) Clearly, On ~ O. There exist x, Y E [a, b], x < Y and f(x) > fey)
such that

o= (w(x) w(y)j(w(x) + w(y»)(f(x) - fey).

It is easy to see that there exist xn , Yn E Gn such that! x - Xn [ ~ On,
Iy - Yn I ~ On, Xn ~ Yn . Then

Hence,

w(x) w(y) -.Lo- On ~ w(x) + w(y) (f(x) - f(xn) I f(Yn) - fey»~

(
w(x) w(y) w(xn) w(Yn) ) r

w(x) + w(y) - w(xn) + W(Yn) (j(xn) - f(Yn»' (5.4)
Now

W(x) w(y) w(xn)W(Yn)
w(x) + w(y) w(xn) + w(Yn)

w(x) w(xn)(w(y) - w(Yn» + w(y) w(Yn)(w(x) - w(xn»
(w(x) + w(y»(w(xn) + W(Yn»

Hence
w(X) w(y) _ w(xn) W(Yn) < Mw2.\( 8)

w(x) + w(y) w(xn) + w(Yn) = 2mu;2 w, n'

Also If(xn) - f(Yn)! ~ 2Mt and

w~~~W~~)(f(x) - f(xn) + f(Yn) - fey»~ ~ ~:2 ACf, on).

Using the above bounds in (5.4) we may deduce (5.1).
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(B) We show the result for gn, the proof for gn is similar. Let x E [a, b],
then by the definition ofg, there exists z E [a, x] such thatg(x) = fez) - ejw(z).
There exists u E Gn such that 0 ~ z - u ~ 20n and hence

gn(x) ~ gn(u) ~f(u) - enjw(u) ~f(u) - ejw(u),

the last inequality following from the fact that en ~ e. We conclude that

g(x) - gn(x) ~f(z) - feu) + e(w(z) - w(u))j(w(z) w(u))

~ 'A(f, 2on) + (ejrnw2) 'A(w, 2on).

Since 'A(f, kon) ~ H(f, on), where k is a positive integer, we have,

Now if x E [a, b], then there exists v E [a, b] such that 0 ~ v - x ~ 2on •

Then by the definition of gn, we have

(5.6)

for some t E [a, v] n Gn • If t ~ x, we have

g(x) ~ g(t) ~f(t) - Bjw(t)

and from (5.6), (5.1) we conclude that

gn(x) - g(x) ~ (e - Bn)jw(t) ~ (Mw2jrnw2) 'A(f, on) + (Mw2Mtjrnw3) 'A(w, On).
(5.7)

If, on the other hand, x < t ~ v, we observe that g(x) ~ f(x) - ejw(x) and
from (5.6) obtain,

gnCx) - g(x) ~f(t) - f(x) + (e - Bn)jw(t) + B(w(t) - w(x))j(w(t) w(x))

which by (5.1) reduces to

gn(x) - g(x) ~ (Mw2jrnw2+ 2) 'A(f, on) + (ljrnw2)(Mw2Mtjrnw + 2B) A(w, On).
(5.8)

Comparing (5.7) and (5.8) we see that (5.8) holds for all x E [a, b]. The
required result (5.2) is then derived from (5.5) and (5.8).

(C) This may be proved using arguments similar to those used to
prove (B).

(D) This is evident.
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